Divisibility Sequences and Powers of Algebraic Integers
نویسنده
چکیده
Let α be an algebraic integer and define a sequence of rational integers dn(α) by the condition dn(α) = max{d ∈ Z : α ≡ 1 (mod d)}. We show that dn(α) is a strong divisibility sequence and that it satisfies log dn(α) = o(n) provided that no power of α is in Z and no power of α is a unit in a quadratic field. We completely analyze some of the exceptional cases by showing that dn(α) splits into subsequences satisfying second order linear recurrences. Finally, we provide numerical evidence for the conjecture that aside from the exceptional cases, dn(α) = d1(α) for infinitely many n, and we ask whether the set of such n has postive (lower) density. 2000 Mathematics Subject Classification: Primary: 11R04; Secondary: 11A05, 11D61
منابع مشابه
Rigid Divisibility Sequences Generated by Polynomial Iteration
The goal of this thesis is to explore the properties of a certain class of sequences, rigid divisibility sequences, generated by the iteration of certain polynomials whose coefficients are algebraic integers. The main goal is to provide, as far as is possible, a classification and description of those polynomials which generate rigid divisibility sequences.
متن کاملNon-Abelian Sequenceable Groups Involving ?-Covers
A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...
متن کاملThe almost PV behavior of some far from PV algebraic integers
This paper studies divisibility properties of sequences defined inductively by n,=l, a n+1 =Sa,+tLea,], where s, t are integers, and 0 is a quadratic irrationality. Under appropriate hypotheses (especially that s + t0 be a PV-number) it is proved that the highest power of A that divides a,, where A is the discriminant of 19, tends to infinity. This is noteworthy in that truncation would normall...
متن کاملSome finite groups with divisibility graph containing no triangles
Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...
متن کاملAlgebraic Divisibility Sequences over Function Fields
In this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005